Tag Archives: movement

Fragile Flexibility (EF Skills Series)

In young children, the schema of their quality world usually revolves around a caregiver or a person who they consider as important in the development of their identity. Their interests initially mimic from imagining that they are versions of the adults they are surrounded by until they are exposed to wider environments, peers, language, media, and then a wholistic interest database emerges from the conglomeration and exposure.

It also makes sense that the younger the child, the more questions they ask. Rarely would you find a child between the ages of 3-5 years come into contact with adults who have set values or biases of themselves concerning what’s ‘right’ or ‘wrong’ around the way they perceive the world. This type of mental flexibility, of mixing and matching new, or new-old ideas in their youth is also directly proportional to the physical activity that they engage in. The pushing of limits of their physical capacities around places that are close to the natural world like garden parks, or places that have been landscaped for the socialization of little people like urban parks are indicators of their levels of mindful curiosity.

It certainly becomes less correlational when children become older, the degree or type of questions with physical movement. The overt questions may turn into musings and conformity is usually expected when school-age commences. Physical movement is timed if the child is not involved in organized sports or games. Just the same, however, the degree of flexibility in these minds depends on the environment they take in, and the imagination that is left from viewing the world from their youth. Martinez and Riba’s 2021 study, Cognitive Flexibility in Schoolchild Through the Graphic Representation of Movement postulates that Neuroconstructivism is the progressive complexity of mental representation over the course of cognitive development and the role of the graphic representation of movement in the transformation of mental schemas, cognitive flexibility, and representational complexity.

They also discuss that In this differential trajectory, mental representation is a key element for cognitive development and for understanding the emergence of child drawing, and changes thereof, as a graphic representation of internalized models of reality (Sirois et al., 2008). A child’s drawing is the first marker that enables the study of mental representation as an external manifestation of internalized reality, by showing what is known about it.

Moreover, events are naturally more attractive than objects, and their foremost feature is their movement. Therefore, part of the content of the first mental representations turns around the identity of events, objects, and people, and their movement and position, which forms the basis of the dynamic representations produced. The first external representative manifestation is the child’s scribble, in which the action of the drawing already contains expressive and representational meanings relating to shapes, movements, and emotions (Quaglia et al., 2015), even if there is no real figure that relates to a meaningful movement for representational purpose.

Such cognitive flexibility is what drives competition in a crowd. The narratives that may have been handed down from authority figures that were used to set ‘safety’ limits, such as limiting or eliminating outdoor time due to the location of where the child resides, or in this recent case the pandemic, inadvertently have pared down the curiosity factor toward the external influences. Subsitutions by devices and programs on the web were meant to digitize the parallel experience of the world beyond the home, however, without the multisensorial inundation of an experience, the ideas being written are almost dream-like. They may be able to describe a forest of trees in a contextual litany of facts, but ask them about the experience and then they are puzzled.

So do you make up for lost cognitive flexibility time for children? Or for yourself as a person of structure and routine? The answer is no. It is more important to make active choices to be exposed to the internal and external worlds that are immediate and to ensure that physical movements are consciously added in a 24 hour period than to make up for the over a year of standing still. Scientific studies have isolated the executive functions that aim at cognitive flexibility, which include the abilities to shift one’s thinking (flexibility), updating the learning that has been made based on the thinking shift (working memory), and response inhibition. In Uddin’s 2021 study, Cognitive and behavioural flexibility: neural mechanisms and clinical considerations she explains the core processes in thinking flexibility with this figure:

Fig. 1

Fig. 1: Core cognitive processes and brain network interactions underlying flexibility in the human brain. From: Cognitive and behavioural flexibility: neural mechanisms and clinical considerations

These brain maps were established with the use of automated meta-analyses of published functional neuroimaging studies can be conducted with Neurosynth, a Web-based platform that uses text mining to extract activation coordinates from studies reporting on a specific psychological term of interest and machine learning to estimate the likelihood that activation maps are associated with specific psychological terms, thus creating a mapping between neural and cognitive states. In the study, Neurosynth reveals that brain imaging studies including the terms ‘shifting’, ‘updating’ and ‘inhibition’ report highly overlapping patterns of activation in lateral frontoparietal and mid-cingulo-insular brain regions, underscoring the difficulty of isolating the construct of flexibility from associated executive functions.

This means that cognitive flexibility is an activity that requires the whole brain, and if that is the case, then it requires a complete human experience. In an article by Sahakian, et. al in the World Economic Forum site called, Why is cognitive flexibility important and how can you improve it? they indicate that Cognitive flexibility provides us with the ability to see that what we are doing is not leading to success and to make the appropriate changes to achieve it. Flexible thinking is key to creativity – in other words, the ability to think of new ideas, make novel connections between ideas, and make new inventions. It also supports academic and work skills such as problem-solving.

They also write that cognitive flexibility can also help protect against a number of biases, such as confirmation bias. That’s because people who are cognitively flexible are better at recognizing potential faults and difficulties in themselves and using strategies to overcome these faults. See their table below showing the flexibility representations:

How do we become adept at choosing to be flexible especially in situations that give little determination of what we can control? Aside from practicing the principles of evidence-based psychological therapy which allows people to change their patterns of thoughts and behavior (Cognitive Behavioral Therapy or CBT), Structure learning has been proven to be potentially another way. It has been described as a person’s ability to extract information about the structure of a complex environment and then decipher initially incomprehensible streams of sensory information via the process of elimination. This specific type of learning taps into the similar frontal and striatal brain regions as cognitive flexibility, thus exposure and practice are the keys to successful learning.

Go forth, be human, and explore!

Advertisement

A Body in Motion

“I hear and I forgot. I see and I remember.  I do and I understand.” ~ Confucius.

Throughout history, many thinkers have conveyed the sentiment that learning is synonymous with doing. Yet, the educational model in most educational institutions from kindergarten through graduate degrees is listening, looking, responding. The doing takes a back seat. Well, from an overburdened educator’s perspective it is easier to plan, move through more content and manage a room of students and lecturing can easily segue into discussion. Yet, what should guide the educational model: ease or  research? Are the conclusions in fact different? What does the research say about the impact of ‘doing’ or ‘moving’ on brain development, especially as it relates to learning?

In 1977, J. Prescott, found  there was a non-motor component to the cerebellum, particularly the section of the anterior cingulate. When rats engaged in novel movements, the area became very active, Additionally, when movement impairments are present, the cerebellum is negatively impacted. This fact that novel movements activated the cerebellar anterior cingulate as opposed to all movements, shows that region becomes active when the brain is engaged in something new aka ‘learning.’ The significance of this study is that the cerebellum had previously been solely associated with motor control.

Eric Jensen, cites in his book, Teaching with the Brain in Mind, multiple sources which showed the involvement of the cerebellum in more than just learning, dating as far back as 1994. Most specifically, a team of researchers identified a path from the cerebellum or what people call the primitive brain, to multiple parts of the brain involved in memory, attention, and spatial perception.

The support doesn’t end there. Further studies using primarily fMRI, showed a relationship between the cerebellum and the visual and language systems, which involved skills such as predicting, sequencing, ordering, timing, and practicing or rehearsing a task before carrying it out; essential skills in the learning process.

Evidence of the role movement plays in learning extends beyond what researchers are seeing in the brain. From a practical perspective, structured and purposeful physical activity has been known to improve mood, alertness, and physical health. These three factors alone, directly and indirectly increase a child’ learning potential. They directly increase through the simple fact that if children are happy, awake and not feeling physically ill, they are more likely to be able to focus in class and learn the information being presented.  Indirectly, these factors lead to decreased stress and cortisol release.

Cortisol is a stress hormone, that when released during times of crisis will trigger a person’s flight, fight or freeze response, located in the amygdala; furthermore, cortisol release, blocks the brain’s access to the pre-frontal cortex in an effort to conserve energy. The pre-frontal cortex houses executive functioning skills, essential in the learning process.

“Tell me and I forget, Teach me and I remember. Involved me and  I learn.” Benjamin Franklin

If so much of what is now known  supports the role of movement in learning, why remove, or demote the very programs that naturally allow students to move? Perhaps because peer-reviewed literature shows mixed results and standardized test scores continue to fall. “The association between school-based physical activity, including physical education, and academic performance: A systematic review of the literature” was published in 2011, this peer-review showed that “slightly more than half (50.5%) of all associations examined were positive, 48% were not significant, and 1.5% were negative.” The conclusion then is it may help, it certainly doesn’t hurt. However, in 2012, another peer-reviwed article controlled for quality of study. The conclusions of this study were two-fold: additional quality studies need to be conducted to confirm, but there is a positive correlation between participation in physical  education classes and academic performance.
Moving more means learning more, not less.

Although, sometimes more is less. Let’s take a look at how the brain learns and what increased academic hours offer.

More and longer academic hours in the subjects of reading and math are not necessarily the best way to increase student proficiency in these subjects. Benedict Carey in How We Learn, discusses the strange yet proven ways that brains learn best, for example, retention improves when concepts are taught, then forgotten, review is strategically spaced out, concepts within one subject are interwoven, and sleep. Therefore, the learning that takes place during increased class time on subjects that we have already been exposed to during the day may decrease our retention for that information not increase it. While it is indirectly related to movement, a case is made for adding classes such as physical education, dance, and even recess time back into the schedule since these opportunities naturally lead to the very strategies that are shown to improve learning and retention.

Researchers across multiple studies found that spacing out information leads to overall increased and deeper retention, possibly because the brain becomes almost habituated to new information when repeated in succession during one period.

Education policy, Common Core and education programs will not change overnight; however, change can begin one teacher, one classroom, one school at a time. The solution is simple: incorporate movement into daily practices, which can be done in a variety of ways:

Yoga balls

While this idea is relatively new; when implemented intentionally, and slowly overtime, it will allow kinesthetic and vestibular learners to self-regulate, which will increase sustained attention, task persistence while ideally increasing endorphins and decreasing cortisol.

Brain Gym

Brain Gym is an example simple movement based program with activities which challenges students to use coordinated movements to cross mid-line. This increases brain lateralization and improves communication between the right and left hemispheres of the brain. Students who possess the ability to cross midline are more likely to succeed on standardized testing.

Standing Desks 

Initial mainstream reports have shown these desks to be placed in offices; however, they also have a place in the classroom, especially for students whose primary learning style is vestibular or kinesthetic. These desks have been shown to decrease some student’s need to move; increase attention and task persistence. Additionally,  when adapted to be multi-funtional, the one-size-fits-all model is simultaneously embraced and debunked.

State Changes

State changes are literally changes of one’s current state. Children in elementary through middle school classrooms are known to have a static attention capacity of on average 10-15 minutes, this may be less for early elementary students. Class periods are typically 45-60 minutes longer and sometimes upwards of 90 minutes when schools implement block scheduling. An hour is a long time for adults to be expected to sit and pay attention to one source of stimulus, let alone children and adolescents. State changes, allow for this period to be broken up in intentionally and functional ways.

State changes can take the form of listening to a mini-lesson to engaging in a think pair share to completing an independent activity and then engaging in a whole group classroom discussion. Additionally, they can be the foundation of the activity after a lesson. For example, after teaching vocabulary words, students could break into pairs or small groups and develop a skit to act out one to two of their words while the rest of the class makes educational guesses as to what words they are demonstrating.

Movement Based Memorization Games

This type of activity most commonly is associated with math concepts and teaching. Since rhythm and counting are essentially one in the same. For kinesthetic and vestibular learners, activities that pair movements with multiplication, division, or even problem solving processes are often more easily remembered and retained. Here are a few resources to get you started:

http://www.mathdance.org

http://www.mathinyourfeet.com

http://www.mathandmovement.com

While this thinking my not be entirely the blanket truth, the body’s truth lies within it. Children need to be engaged in order to learn. Moving and doing is a natural way to engage busy bodies and minds.

“We Learn . . .
10% of what we read
20% of what we hear
30% of what we see
50% of what we see and hear
70% of what we discuss
80% of what we experience
95% of what we teach others.” 

~ William Glasser